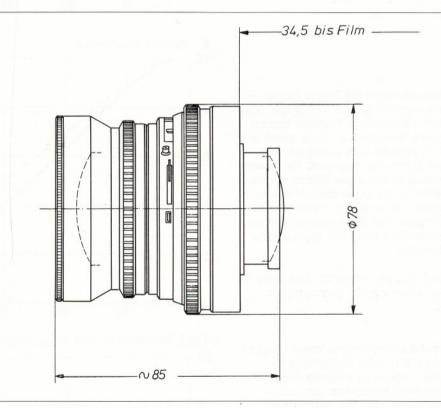

Biogon f/4.5 - 38 mm Cat. No. 104117

HASSELBLAD

CARL ZEISS Abteilung für Photographie


Because of the extremely short distance of the last lens vertex from the film plane (back focal distance), the BIOGON cannot be used in the Hasselblad 500 C/M -500 EL/M. It is therefore assembled in its own special camera body, the Superwide C.

Even at full aperture the BIOGON f/4.5 - 38 mm produces pictures of outstanding sharpness and brilliance. Distortion aberration is virtually eliminated. Owing to the short focal length, there is such a large depth of focus that the fixed-focus adjustment can frequently be used.

7082 Oberkochen West Germany

The BIOGON is particularly suitable for architectural and model photography, for interiors and for the recording of technical processes at close range. Whenever maximum image quality has top priority and subjects of this type are to be reproduced with a minimum of distortion, the BIOGON is the best choice. For compactness and performance it cannot be beaten by any retrofocus system.

Number of lens elements: 8

Number of components: f-number:

Focal length:

Negative size: Angular field 2 w:

Spectral range: f-stop scale:

Mount:

38.6 mm

56.5 x 56.5 mm diagonal 90°, side 72°

visible spectrum 4.5 - 5.6 - 8 - 11 - 16 - 22

Compur shutter mounted on SWC

camera body

Filter mounting:

adapter ring for Hasselblad series 63

Weight: 560 g Distance range:

 ∞ to 0.3 m

Automatic depth-of-field indication for $z = 0.06 \text{ mm}^*$)

Position of entrance pupil: Diameter of entrance pupil:

8.6 mm

Position of exit pupil:

21.6 mm in front of the last

lens vertex 9.1 mm

Diameter of exit pupil:

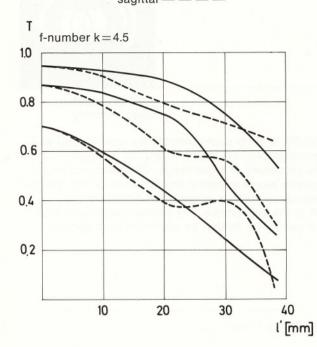
Position of principal plane H: Position of principal plane H':

19.9 mm in front of the last lens vertex

Distance between first and

last lens vertex:

76.2 mm


*) z = circle-of-confusion diameter

21.7 mm behind the first lens vertex

23.5 mm behind the first lens vertex

Performance data:

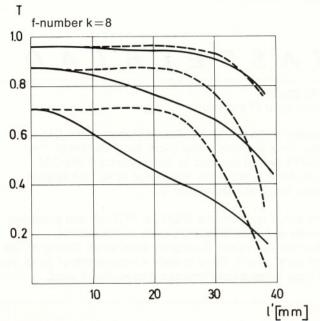
Biogon f/4.5 - 38 mm Cat. No. 104117

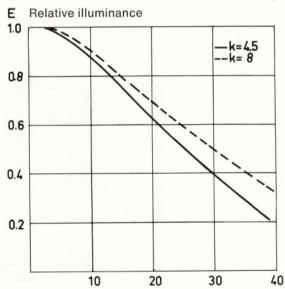
1. MTF Diagrams

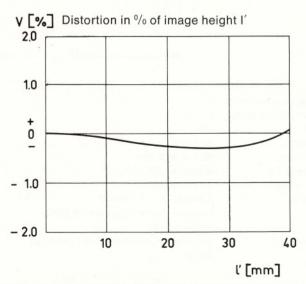
The image height I'— reckoned from the image center— is entered in mm on the horizontal axis of the graph. The modulation transfer T (MTF=Modulation Transfer Factor) is entered on the vertical axis. Parameters of the graph are the spatial frequencies R in periods (line pairs) per mm given at the top right hand above the diagrams. The lowest spatial frequency corresponds to the upper pair of curves, the highest spatial frequency to the lower pair. Above each graph the f-number k is given for which the measurement was made. "White" light means that the measurement was made with a subject illumination having the approximate spectral distribution of daylight.

Unless otherwise indicated, the performance data refer to large object distances, for which normal photographic lenses are primarily used.

2. Relative illuminance


In this diagram the horizontal axis gives the image height I' in mm and the vertical axis the relative illuminance E, both for full aperture and a moderately stopped-down lens. The values for E are determined taking into account vignetting and natural light decrease. The natural light decrease increases with the factor "cos⁴ of half the angular field". It is independent of the design and degree of correction of the lens.


3. Distortion


Here again the image height I' is entered on the horizontal axis in mm. The vertical axis gives the distortion V in $^0/_0$ of the relevant image height. A positive value for V means that the actual image point is further from the image center than with perfectly distortion-free imaging (pincushion distortion); a negative V indicates barrel distortion.

White light Spatial frequencies R = 10 periods/mm

20 periods/mm 40 periods/mm

Subject to technical amendment